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GAUSSIAN APPROXIMATIONS TO SERVICE PROBLEMS

A COMMUNICATION SYSTEM EXAMPLE

*
D. P. Gaver

Naval Postgraduate School
Monterey, California

**
J. P. Lehoczky

Carnegie-Mellon University
Pittsburgh, Pennsylvania

1 . Introduction .

Any reasonable model of a complex communication or other

service system requires consideration of several interacting

populations. Consequently, it becomes necessary to name the

state of each population, and to describe the state of the entire

system in terms of a vector-valued state variable. With rare

exceptions very little information can then be derived in a

direct manner, e.g. by postulating that the modelling process is

multidimensional birth-death or, more generally, Markov, and

deriving mathematical expressions for steady-state probabilities,

etc., as exemplified by Feller [3] I, Chap XVII, and in many

papers. Exceptions do occur but seem rare, see the cyclic queue

model of Gordon and Newell [5], and related work by Whittle [10]

and by Kingman [6]. Consequently, it is tempting to devise

approximate diffusion models for such processes; previous work with

this intent has been done by Schach and McNeill [8] , McNeill [7]

,
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and the approximation studied by Barbour [2]. Our paper, [4],

indicates how this may be done for a transitory situation. In

this paper we study a communication system that consists of c

channels, sought for by arriving messages that balk if they

encounter an occupied channel. Balking messages enter a distinct

(retrial) population, or populations, from which they may eventually

either defect, or again apply for service on one of the channels.

Previous work in this problem area along classical point-process

model lines is described by Riordan [9] . Our purpose here is to

indicate how stochastic differential equations may be used to

write down a model, and how useful information may then be derived.

In order to illustrate the degree of accuracy achieved we have

conducted some sample simulations, the results of which generally

support the approximation method.



2. The Model .

The model structure is depicted in Figure 1. Input to a

service center arrives according to a Poisson process with

intensity cA (t) . The service center consists of k distinct

compartments and a total of c channels or servers. The service

process on the i— compartment is Markovian (y . (t) ) ; i.e. if

a "customer," here message, is undergoing stage-i service at t

it terminates within (t,t+dt) with probability y.(t)dt + o(dt),

independently of previous process history. Upon completion of the

i— service function a message proceeds immediately to the (i+1)—

.

The channels are considered separate, and if any compartment of a

channel is occupied then no other message can enter that channel.

Consequently, the service center has a capacity of c messages

at any one time, and a single message has a total service time

which is the sum of k independent but time-dependent exponentials.

If y.(t) = y, i=l,...,k then the message service time is

Gamma (k,y) . In fact, the compartments are introduced in order

to permit the modelling of non-exponential service.

We postulate that a message selects a channel uniformly

at random from among the c possible channels. If that channel

is busy, the message is denied immediate access to service. Other-

wise, the message occupies the selected channel until service in

all k compartments has been completed. The random selection of

channels and temporary denial of service goes unrecognized in the

context of classical queueing problems; however, such assumptions

are quite appropriate for certain communication situations (telephone
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or air-traffic control, for example). In such cases the customer

may not automatically select an empty channel, but must use what-

ever channel is appropriate, whether busy or not. If channels

tend to be used equally, the random selection is then appropriate.

If a customer is not serviced there is no physical queue.

A telephone caller receiving a busy signal can only hang up, per-

haps with the intent to call again shortly. An airline pilot or

submarine attempting to contact a busy traffic controller or shore

communication facility must try at a later time, possibly to be

denied service again. We assume that messages or customers who

are denied service enter a category R. Such customers may retry

or recall at a later time. These customers reapply for service

after being in state R for a Markovian (v(t))~ period of time

In most cases v(t) would be rather large if the customer must

receive service (air-traffic control) , but might be small in the

case of telephone calls.

In many situations customer discouragement will occur,

expecially if repeated requests for service are denied. We adopt

a simple model of customer discouragement by assuming a binomial

probability 1 - a that a customer upon leaving R decides to

leave the system and is lost. It is clear that a vast array of

models can be introduced to represent customer discouragement.

The most general sort might include states iR. } with R.
1

i=l
signifying that the customer has been denied service i times.

The holding time in R . is Markovian (v. (t) ) , and 1 - a . is

the probability of loss. We discuss only the simple model



mentioned earlier with one state R, but the reader may notice

that the analysis used can easily be extended to handle the most

oo

general case with states {R. }

We wish to describe the behavior of this system by calcu-

lating system characteristics such as the fraction of customers

lost, the utilization of the c channels, and the number of

customers in state R, all as a function of the system parameters,

Standard Markov chain methods can be used on this model owing to

the Markovian assumptions. Unfortunately, the state of the system

is a k+2 dimensional vector. While a Markov chain analysis

is straightforward, it must be carried out numerically. This

makes it difficult to assess the influence of system parameters

on the quantities of interest. Furthermore, it is difficult to

deduce information about the transient behavior of the system and

to handle non-stationary transition probabilities using Markov

chain techniques. For these reasons we adopt the method of diffu-

sion approximations as an approach. This consists of letting

c -y +00 ancj treating the resulting random processes as the sum of

a deterministic process plus an additive noise (diffusion) process.

This technique allows one to compute the quantities of interest

as a function of system parameters and to describe the transient

behavior of the system. If we assume the transitions are station-

ary, then techniques from the theory of stationary processes,

especially spectral analysis, can also be applied. While all

results are exact only in the limit as c -* °°, we present compari-

sons between simulated systems with c = 10 and 20, and diffusion



approximations. The comparisons will show that diffusion

approximations may offer surprising accuracy even for c as

small as 10. Thus the method described is quite appealing as an

approximation tool in the present problems , and in many others

as well.



3 . Diffusion Approximation of the System .

We introduce the following notation:

Q. (t) = number of messages or customers at service stage i,

at time t, i = l,...,k,

k
Q(t) = £ Q.(t) = number of customers receiving service at

i=l
1

time t

,

R(t) = number of customers in state R at time t,

L(t) = cumulative number of customers lost by time t.

A customer arriving at the service center at time t selects

a channel at random, hence with probability Q(t)/c is denied

immediate service, and with probability l-Q(t)/c begins service.

It is straightforward to describe this k + 2 dimensional system

and its transition probabilities over the interval (t,t+dt);

however, we choose to do this approximately to terms of order dt

using techniques from the theory of stochastic differential equa-

tions; see Arnold [1], and also Gaver, Lehoczky and Perlas [4].

Using the notation dX(t) = X(t+dt) -X(t) for a stochastic process

{X(t), t^O} we express the evolution of our process as follows:

dQ
1
(t) = (\(t)c+av(t)R(t)) (1 -Q(t)/c)dt-

y

1
(t)Q

1
(t)dt

+ /X(t)c(l - Q(t)/c) dW
A
(t) + /av(t)R(t) (1 - Q(t)/c) dW

R
(t)

- /y
1
(t)Q

1
(t) dW

Q
(t) (3.1)



dQ
i
(t) = y

i _ 1
(t)Q

i _ 1
(t)dt- y

i
(t)Q

i
(t)dt+ /y

i _ 1
(t)Q

i _ 1
(t) dW (t)

i-1

- /y . (t)Q
±
(t) dW (t) for i = 2,...,k

dR(t) = -(l-a+a(l-Q(t)/c) )v(t)R(t)dt + X(t)c(Q(t)/c)dt

- /(l-a+a(l-Q(t)/c))v(t)R(t) dW
R
(t) + A (t)c (Q(t)/c) dW

A
(t)

dL(t) = (l-a)v(t)R(t)dt+ /(l-a)v(t)R(t) dW
R (t) .

In equations (3.1) the terms dW (t) , dW (t) , and

dW (t) are the "derivatives" of independent standard Wiener
A

processes, and as such are usually called Gaussian white noise.

Other approximations are possible, but are not pursued here. We

mention, for example, using Poisson white noise where the standard

Wiener process is replaced by a Poisson process with zero drift.

A word about the derivation of our equations (3.1) is in

order. Consider that for the occupancy of the first service

compartment, Q, (t) : conditional on the values of Q, (t) and

R(t) the drift or mean change of 0, in time dt is (a) positive

by the amount (A (t) c+ctv (t) R(t) ) (1 - )dt, where the first

term represents the expected number of arrivals in (t,t+dt),

and the other represents the probability of acceptance into ser-

vice in compartment i = 1 , while (b) the second, negative, term

-]ii (t)Q, (t)dt, represents the expected number departing Q, in

(t,t+dt); hence the difference is the net expected increase in

Q, . Now for dt small we represent the fluctuating (diffusion)

component of input by (c) : /A (t) c(l - Q (t)/c) dW^(t), where the



scale factor is the standard deviation of a Poisson process with

mean X (t)c (1 - Q (t)/c) and dW^ (t) is W(0,dt), plus (d) a

corresponding but independent term representing arrivals from R,

minus (e) another corresponding term representing departure from

Q, . Although this derivation is heuristic, the rationale is

simply that in an interval of length dt the various condition-

ally Poisson components of change are approximately normal,

owing to the fact that c is presumed large.

We wish next to view the state of the system

(Q-. (t) , . . . ,Q, (t) ,R(t) ,L (t) ) as the sum of a deterministic pro-

cess plus a noise or diffusion process. To accomplish this we

introduce the standardized noise variables:

Q. (t) -cq. (t) k
X, (t) = -± i = l,...,k; X(t) = I X. (t)

/c i=l

Y( t ) = R(t) - cr(t)

z(t) = L(t) -cMt)- c

/c"

(3.2)

k
q(t) = I q (t)

i=l

We then write (Q, (t) , . . . ,Q, (t) ,R(t) ,L (t) ) in vector

fashion as

c(q
1
(t) ,q 2

(t) , ...,qk
(t) ,r(t) , fL (t) )

+ c(X
1
(t) ,X

2
(t) ,... ,X

k
(t) ,Y(t) ,Z(t) )

,

the first term is the deterministic approximation, the last is

10



the noise process. We substitute definitions (3.2) into (3.1)

and divide the resulting equations by /c. The results are, to

terms of order 1 in c, expressible as

dX
1
(t) = {(1 -q(t))av(t)Y(t) - (X(t)+av(t)r(t) )X(t) - y

1
(t)X

1
(t) }dt

+ /X(t) (1 -q(t)) dW
x
+ /av(t)r(t) (1 -q(t) ) dW

R
- /y

1
(t)q

1
(t) dW

Q

•c{q{(t) - (X(t)+av(t)r(t)) (1 -q(t)) +y
1
(t)q

1
(t) }dt,

dx
i
(t) = {y i _ 1

(t)x
i _ 1

(t) - y i
(t)x

i
(t)}dt + /y

i _ 1
(t)q

i _ 1
(t) dW

i-1

- v^ITTtTqTTty dW - /c"{q[(t)-y
i _ 1

(t)q
i _ 1

(t) + y i
(t)q

i
(t) }dt

i

for i = 2,...,k, (3.3)

dY(t) = {-[(l-aq(t))v(t)]Y(t) + [X(t) +av(t)r(t)]X(t)}dt

- /(l-aq(t))v(t)r(t) dWR + /X(t)q(t) dW^

- /c"{r' (t) + (l-aq(t))v(t)r(t) - X(t)q(t) }dt,

and

dZ(t) = (l-a)v(t)Y(t)dt + /(l-a)v(t)r(t) dW
R

- /c"{£'(t) - (l-a)v(t)r(t) }dt.

We now let c -» °° in equations (3.3). Clearly, in all

cases the /c term must be identically 0, or else the equations

11



explode. Setting the Jc term to we derive a system of

ordinary differential equations satisfied by the deterministic

approximation

:

q|(t) = (X(t)+av(t)r(t)) (l-q(t)) - y
1
(t)q

1
(t)

q|(t) = U
i _ 1

(t)q
i _ 1

(t) - u
±
(t)q

i
(t) i=2,...,k (3.4)

r'(t) = -(l-aq(t))v(t)r(t) + X(t)q(t)

V (t) = (l-a)v(t)r(t)

It is easy to find q. (t) in terms of <3-_i (t) for

i = 2/.../k by solving the second equation in (3.4).

q.tt)
ft -/

s
y.(x)dx -/ vi.(s)ds

e y i _ 1
(s)q

i_1
(s)ds + q i

(0)e

but no further explicit results seem attainable without simplifi-

cation and further parameter specification. Of course numerical

solution of the differential equations by computer is always

possible, and may well prove to be the fastest route to useful

information.

Steady State Behavior of the System

Suppose however that we let t -* °° and attempt to find a

steady state solution. As t -* °° let X (t) , v(t), y.(t),

q.(t), and r(t) converge to X, v, ]i • r q-/ and r respec-

tively. Then q! (t) and r* (t) all converge to and the

steady state equations become

12



= (X+avr) (1-q) - y.^

= y i-lqi-l " y
iq i

i = 2 "-" k

= -(1-aq) vr + Xq

£• (oo) = (l-a)vr

k ,

Letting y = 1/ £ — we find the steady-state values
i=l y

i

r(co) = Xc
3 A+y-/(X+y)^-4Xay

*
; v(l-aq) q ^

; 2ay

The negative square root is used for q since £ q £ 1. Fur-

thermore/ the asymptotic loss rate, I' (<*>) , is given by

—— -. The input rate is X, so the output rate of those1-aq r

actually served is X
(

.. J"° ) , and the asymptotic loss fraction

(the fraction of customers leaving without receiving service) is

given by (1-a) q/ (1-aq)

.

We intend to carry out the subsequent analysis under the

assumption that steady state conditions prevail. In this model

the deterministic equations are nonlinear, hence there is a ques-

tion of the stability of the system (in the sense of Liapunov)

.

We must be concerned with the effect of a small perturbation when

the system is in steady state. If the system is not stable then

it will diverge from, rather than return to, steady state. The

stability can be established when X(t), y. (t) and v(t) con-

verge to X, y., and v by first linearizing equations (3.4).

We omit l(t) from the system since it clearly grows without

13

(3.5)



limit and has no steady state value. We assume now that the

parameters X, y., and v are all constants, and express (3.4)

in matrix form:

q{(t)

qj(t)

qi<t)

r'(t)

r-(X+u
1

) X av-\ /-q
1
(t) -\

k

X -v

qk
(t)

r(t)
(3.7)

or

X 1 (t) = c + AX(t)

The system will be stable in the sense of Liapunov if the

k + 1 eigenvalues of the A matrix have strictly negative real

parts. The eigenvalues all have strictly negative real parts

provided y. > and v > for i = l,...,k. We prove this in

the appendix.

We now turn to a description of the noise process. We

assume deterministic equations (3.7) are satisfied. The represent

tation (3.3) becomes in matrix form

where

dU(t) = A.U(t)dt + B.dW.
r~ ^t'*' *^t **'t

U(t) = (X
x
(t) ,... ,X

k
(t) ,Y(t) ,Z(t))

'

W(t) = (W
x
(t) fWR (t) ,W

Q
(t),...,W

Q
(t))'

(3.8)

14



K = f- (y, +X+avr) - (X+avr)

y
2

X+avr X+avr

-(X+avr) av (rq) 0^

-Vk

X+avr - (1-aq)

v

(l-a)v

and

st r
/X (1-q) /avr (1-q)

/Xq -/(1-aq) vr

/(1-aq) vr

/yq

/yq /yq

/yq"

>

•/yq

In the above definitions of A^ and B,_ we have omitted the
~t ~t

argument t in X (t) , y.(t), v(t), q(t), and r(t) for

notational convenience. As t •* <» a. and B. converge to A
'^t ~t ~

and B again given by (3.8); however, asymptotically Z(t) is not

of interest because L(t) * +». Furthermore, A,, is singular.

For these reasons we eliminate Z(t) and reduce the dimension to

k + 1. The resulting stochastic differential equation becomes

15



dX<t> = C^vmdt + J^d^ (3.9)

with V(t) = (X-, (t) , .. .,Xk (t) ,Y(t)) ' and C given by A
fc

with

the last row and column removed. D, is given by B. with the~t J ~t

last row removed. Again C. and D, converge to C and D as
-' *^t *^t *** **"

t * °°.

The stochastic process V(t) satisfying (3.9) is a non-

stationary multivariate Ornstein-Uhlenbeck process. This process

has been extensively studied, with many results recorded by Arnold

([1], Section 8.2). We shall make use of these results in what

follows.

We may integrate (3.9) to find

V(t) = V(0) + C 4
_V(t)dt +

t t
D. dW^.. (3.10)

o ^ T-

The process V(t) is Gaussian if V(0) is either constant

or itself Gaussian. This is clear from direct examination of

(3.10). Suppose V(t) is either constant or Gaussian. V(t+dt)

is the sum of V(t) + C.V(t)dt, which is Gaussian, and another

Gaussian variable. Thus J/(t+dt) will also be Gaussian and it

remains to characterize the marginal moments of V(t) as well as

the covariance structure.

Let u^. = E(V(t)), l t
= E((V(t)-jj

#t
) (V(t)-Jit

)) ' be the

marginal mean and covariance of V(t). It is shown in Arnold [1]

that u, and £. satisfy first-order differential equations.

First, the mean vector is described by

it
=

£t*t
with k*

= ^ (0) (3 - 11}

16



and, second, the covariance matrix £ is the unique symmetric

nonnegative definite solution of the matrix differential equation

It
=
£tlt

+
It£i

+ fit& with
lo = E( ^ (0) -Jio )(^ (0 >-iio

),) - (3 - 12)

Equations (3.9), (3.11), and (3.12) can be formally solved

with the aid of the fundamental matrix $(t), that is the matrix

of solutions of the homogeneous equation $(t) = C,$(t), $(0) = I.

For example, if C = C, in steady state, $(t) = exp(Ct). Using

£(t) we find

ft
V(t) = $(t) (V(0) + ($(s))" 1

D dW )~ ~s ~s

Et
= £(t)E(V(0))

(3.13)

K(s,t) = EdVis)-}^) (V(t)-U^) ')

min (s, t)

o

letting s = t, k(s,t) = £ thus providing a formula for £.

.

We note that in practice it will often be convenient to

apply a computer routine for solving first-order differential

equations directly to (3.11) and (3.12).

Suppose now we assume C,_ = C and D,_ = D, that is we
~t *** *wt **•

are in steady state. It will be shown in the appendix that all

k + 1 eigenvalues of C have negative real parts. In fact, the

matrix C is nearly identical to the matrix A examined earlier.
'°° Ct C't

Then if v(0) ~N(0,7) with 7 = e~ DD'e~ dt , V(t) is a
J o

stationary Gaussian process with E(V(t)) = 0, E (V (t) (V (t)
)

' ) = 7

17



where £ is as defined above or is, equally, the unique nonnegative

definite solution of the equation

£i + l£' = -dd' .

Furthermore, the covariance function K(s,t) = H(s-t) is given

by

C(s-t)
£ s £ t £

(3.14)

£e£ ,(t~s)
t *s * .

We summarize our description of the k + 1 dimensional

queueing system as follows using the diffusion approximation:

(Q
1
(t) / ...,Q

]c
(t) ,R(t)) *r

C(q
1
(t) ,... ,qk

(t) ,r(t)) + /C (X
1
(t) ,. .. ,X

k
(t) ,Y(t))

where the first term is given by (3.4) and the second is a multi-

variate Ornstein-Uhlenbeck process with mean jj^ , covariance

function H(s-t) as described earlier.

Results for the Single Service Compartment

We give the exact formulas in the steady state case for

the special case of k = 1, a single service compartment. In

this case, the deterministic approximations are still given by

(3.6). The noise approximation will be a bivariate Ornstein-Uhlen-

beck process with mean 0. The covariance matrix 7 will be the

unique symmetric nonnegative definite solution of the equation

18



A l + lA' = -BB
*••*" t**r~

(3.15)

where

A =

B =

C-(y+X+avr) (l-q)av

X + avr - (1-aq)

v

/X(l-q) Axvr (1-q) -/y

/Xq -/(l-aq)vr

^
BB' =

b
l

b
3

L b_ b„

for notational simplicity in what follows. Lastly

I
=

( °ij ) a
il

= Var ( x (t))

a
22

= Var(Y(t))

a
12

= Cov(X(t) ,Y(t))

Solving (3.15) we find

a.. = [b, ( |A|+a; o )
- 2a 10 a 00b + a'bJ/D11

l

22 12 22 2 12 3

°12
=

[
-a

21
a
22

b
l
+ 2b

2
a
ll

a22" b
3
a
ll

a
12

]/D

a = [a* b, - 2a, ,a 9 b 9 + h
( lAl+a,2 , ]/D22 21"1 ""11"21"2 "3 11

D = 2(a
i;L

+a
22 ) |a| . (3.16)

In the last section we present a comparison of the theoretical

calculations and simulation results in a variety of situations

with c = 10 and 20. We are approximating the state of

the system (Q(t),R(t)) by c (q, r) + /c (X (t ) , Y (t) ) . The diffusion
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approximation allows for more than a description of the marginal

behavior in that the transient behavior can be characterized and

the joint behavior at any set of time point, (t, ,...,t ) can

be worked out using the multivariate Ornstein-Uhlenbeck process.

However, we do not present numerical results of this kind in

this paper.
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4 . The Spectral Matrix .

We now assume the system is in steady state and adopt the

steady state diffusion approximation of it. The noise process is

given by

dU(t) = AU(t)dt + BdW(t)

.

(4.1)

The noise process {U(t),t^0} is stationary, hence

(Q-. (t) , . . . ,R (t) ) will also be stationary. This observation opens

up the possibility of applying techniques from the theory of

stationary processes to our queueing process. In particular we

compute the spectral matrix associated with the noise process.

We begin with the spectral representations of the stationary

processes U(t) and W(t)

U(t) = e
la)t

dS (co) , W(t) = e
la)t

dSw (oj) (4.2)

where {S TT (w),w e (-co,<») } and {Sn (o)),iDe(-»,<»)} are processes with

orthogonal increments. The spectral matrices associated with U

and W, f„ and f rT , are the matrices of cross spectral densities~ ~u ~W

of the stationary processes and are given by

(w)£7 = E(dS
u
(o))dS

u
(a>)), fw U)

= E(dSw (a))dSw ( W )) = ^.

We wish to compute f TT (w) in terms of A and B.

Combining (4.1) and (4.2) by differentiation of (4.2) we

find

(iwl-A)dS TT
= BdS.. (4.3)
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Taking transposes in (4.4), multiplying, and taking expectations

we obtain

BB'
E [ (iu)I-A) dSyd^ (iu)I-Aj ] = E [Bd^dSwB

'] = ^^* *w rO *^-

Solving (4.5) for f rT
= E(dS TTdS TT ) we find

fjfjM = ^(A-ioilj'^^A'+io)!)" 1
.

^»

We illustrate this computation in the case k = 1, a

single service compartment. Here

A =

-(y+X+avr) (l-q)av^

, BB'

2yq A
^

A 2\q)K X + avr -(1-aq) \)
J

with A = X/q(l-q) - Vr/a(l-q) (1-aq)

.

After a few simple matrix inversions and multiplications we

compute

£u ( ">

rf
QQ

(w) f
QR (w)>

Lf
RQ

(w) f
RR

(w)J

(4.4)

(4.5)

where

f
QQ

U) = [2yqoa
2 +v (1-aq) (2yqv (1-aq) +Aav(l-q) )

+ av(l-q) (Av(l-aq) + 2Xqav(l-q) ] /D

f
RR (to) = [2Xqw 2 + (X+avr) 2yq(X+avr+A (y+X+avr)

)

+ (y+X+avr) ( A(X+avr) + 2Xq (y+X+avr) ] /D (4 . 6)
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fQR (u>) = { [Aw 2 + v(l-aq) (2yq(X+avr) + A (y+X+avr) )

+ av (1-q) (A (X+avr) + 2 Xq (y+X+avr) )

]

+ i(0 [AV (1-aq) + 2Xqav (1-q) - 2yq (X+avr)

- A (y+X+avr) ] }/D

f
RQ (a)) = f

QR (a,)

with

D = [a)
2 + av (1-q) (X+avr) - X (1-aq) (y+X+avr) ]

2

+ [V (1-aq) + y + X + avr] 2
a>

2
.

The functions f0Q (u)), f (go) are the spectral densities

of Q(t) and R(t) respectively. The real part of f__(u))

is the cospectral density and the imaginary part is the quadrature

spectral density. The latter two densities provide information

about the phase behavior of (Q(t),R(t)). Notice that f (w)

-2
and fR (w) exhibit tail behavior w and thus fluctuate in a

high-frequency manner similar to that of the ordinary Ornstein-

Uhlenbeck process.
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5. Comparison with Simulation

The previously quoted results are derived under the supposition

that c, the number of service channels, becomes indefinitely

large. Since it will be desirable to apply the approximations in

case c is finite, we have undertaken to perform several simula-

tions of particular systems with moderate c-values, and thus to

provide an empirical check of model accuracy. We shall see that

our approximations are generally good.

The simulation simulated is the system (Q (t) ,R(t) ,L (t) ) in

which k = 1 (the single service compartment case), and X, u,

and v are constants. By virtue of the Markov nature of the

system we see that (i) sojourns in states are of independent and

exponentially distributed duration, and (ii) state changes occur

in accordance with multinomial Bernoulli trials. Reference to

( 3.1 ) shows that the state-dependent transition rates are the

following

(Q(t) ,R(t) ,L(t)) + (Q(t)+l,R(t) ,L(t))

+ (Q(t)+l,R(t)-l,L(t)

)

* (Q(t)-l,R(t) ,L(t)+l)

-* (Q(t) ,R(t)+l,L(t))

-v (Q(t) ,R(t)-l,L(t)+l)

Xc[l-Q(t)/c]

VCtR(t) [l-Q(t)/c]

uQ(t)

XcQ(t)/c

v(l-a)R(t)

(5.1)

Hence, given that at time t the system is in state (Q (t) ,R(t) ,L (t)

it resides there for independently and exponentially distributed

times with means equal to the inverse of the sum of the right-hand

side of (5.1), and then instantaneously jumps to a new, neighboring,
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state with probabilities given by the right side of (5.1) times

the mean sojourn time in state. Our simulation program is based

on this scheme.

The simulation results recorded were the fractions of times

that the system inhabited each state (Q=i, R=

j

, L=k) over the

course of the simulation, the latter chosen to be long. These

fractions approximate the stationary state probabilities. The

latter probability estimates were in turn used to compute estimates

of E[Q(oo)], Var[Q(°°)], E[R(«>)], Var[R(»)], and E[L(°°)]. Also,

the tabulated empirical marginal distributions of simulated Q

and R were plotted on normal probability paper in order to pro-

vide a visual check for normality.

Discussion

Agreement of the diffusion model with the simulation is,

apparently, quite acceptable for the cases considered, which by

design include relatively small numbers of channels. Extensive

additional simulation results, left unreported here, convey the

same message. The most noticeable discrepancy occurs in the

estimates of Var[R(°°)]: that obtained from the analytical

approximation consistently exceeds the simulation estimate. Attempts

to show that simulation's failure to reach steady state (starts

were normally made at Q(0) =R(0) = 0) by starting higher gave

essentially the same results. The discrepancy remains unexplained.

In order to aid quick appraisals we have tabulated some key

quantiles; on the simulation side these are inexact both because

of the inherent discreteness of the distributions and because of
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simulation sampling error, and on the diffusion side because of

the use of the continuous normal approximation to a discrete

distribution. We have, for example, diffusion approximated

Q0.95 bY ECQ] + 1#65 St - Dev -[Q1' Qo.75
by E[Q

0.75 ] +

0.68 Std.Dev. [QQ 75 ] , and Q Q 5Q
by E[Q]. The selected proba-

bilities were calculated using a simple continuity correction,

e.g.

P{Q s: x} = —
"2tt

(x+|-E[Q]) /Std.Dev. [Q]

- |z 2 dz
e

The latter give at a glance an impression of the Gaussian marginal

model adequacy, which by and large is good out to the two-sigma

level. As is to be anticipated, the Gaussian approximation

degenerates in quality when E[Q] + k Std.Dev. [Q] nears either

zero or c.
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Table 1

Comparison of Simulation and Diffusion Approximation

X = 7, u = 4, v = 6, a = 0.5, c = 10

EQQ(oo)]

Var[Q(°°) ]

Std.Dev. [Q(°°) ]

E[R(»)]

Var [R(»)

]

Std.Dev. [R(°°) ]

Simulation

7.31

2.00

1.41

13.55

16.84

4.10

Diffusion Approximation

7.34

2.08

1.44

13.54

20.80

4.56

Q

Q

r0.05

0.25
!0.50
!0.75

0.95

'0.05

'0.25

'0.50

'0.75

'0.95

4

6

7

8

9

7

10

13

16

20

5

6

7

8

10

6

10

14

17

21

P{Q(«

P{Q(<

P{Q(<

P{R(<

P{R(<

P{R('

£9}

£7}

* 5}

£ 20}

£ 13)

£.6}

956

531

104

946

518

030

933

544

102

937

496

062
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Table 2

Comparison of Simulation and Diffusion Approximation

X = 5, y = 4, v = 6, a = 0.5, c = 10

Simulation Diffusion Approximation

E[Q(»)] 6.45 6.49

Var[Q(°°)] 2.36 2.51

Std.Dev. [Q(°°) ] 1.54 1.58

E[R(«)] 8.09 8.01

Var[R(°°) ] 10.20 12.65

Std.Dev. [R(°°) ] 3.19 3.56

Q0.05
3 4

Q0.25
5 5

Q0.50
6 6

Q0.75
7 8

Q0.95
8 9

R
0.05

3 2

£\. **. « .- 5 6
0.25

R
0.50

8 8

p 10 10
0. 75

R
0.95

13 14

p{Q(oo) s: 9} .986 .971

P{Q(oo) * 6} .497 .504

p{Q(oo) <: 3} .030 ,030

P{R(°») £ 14} .966 .965

P{R(°°) £ 8) .581 .555

P{R(°°) £ 2} .021 .050
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Table 3

Comparison of Simulation and Diffusion Approximation

A = 7, u = 4, v = 6, a = 0.5, c = 20

Simulation Diffusion Approximation

E[Q(«)] 14.62 14.69

Var[Q(°°)] 4.08 4.16

Std.Dev. [Q(°°) ] 2.02 2.04

E[R(«)] 27.01 27.08

Var [R(°°) ] 34.07 41.60

Std.Dev. [R(~)

]

5.84 6.45

Q0.05
11 11

Q0.25
13 13

Q0.50
14 15

Q0.75
16 16

Q0.95
17 18

R
0.05

17 16

R
0.25

22 23

R0.50
26 27

R
0.75

30 31

R0.95
36 38

p{Q(oo) i 19} .998 .991

p{Q(oo) s: 15} .654 .655

P{Q(co) & 11} .066 .059

P{R(°°) ^ 40} .982 .981

P{R(<») * 27} .532 .526

P{R(~) ^ 14} .026 .025
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Table 4

Comparison of Simulation and Diffusion Approximation

X = 5, y = 4, v = 6, a = 0.5, c = 20

Simulation Diffiusion Approximation

E[Q(°°)] 12.89 12.98

Var[Q(°°) ] 4.89 5.02

Std.Dev. [Q(»)l 2.21 2.24

E[R(«) ] 15.98 16.02

Var [R(°°) ] 20.58 25.30

Std.Dev. [R(«>)] 4.54 5.03

Q0.05
9 9

Q0.25
11 11

Q0.50
12 13

Q0.75
14 15

Q0.95
16 17

R
0.05

8 8

R
0.25

12 13

R
0.50

15 16

R
0.75

18 19

R
0.95

23 24

P{Q(«) * 17} .989 .978

P{Q(oo) ^ 13} .596 .591

P{Q(oo) ^ 9} .066 .061

P{R(«>) ^ 24} .960 .954

P{R(«>) £ 16} .569 .540

P{R(°°) ^ 8} .037 .067
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Appendix

We prove that the matrices £ from (3.7) and £ from

(3.9) have eigenvalues with strictly negative real parts. Both

matrices have the form

M = -(U-j+c) -c -c -c

y
i

-y
2

U
2

-v
3

.. • •

•

• y
3

•

•

•

•

•

*

-V

c c c c

o

c
J

with c = X, d = av, e = v for & and c = A+avr , d = av(l-q) ,

e = v(l-aq) for $L_. In both cases e-d = v(l-a) > 0.

We wish to solve for the k + 1 roots of the equation

|M - 61 I
= 0. Simple manipulation gives

M- 81 = (8+y^

1

c

-(9+y
2

)

V
2

*

c

(6+y
k )

(8+e-d)

-(8+e)

k+1 k+3
= (~1)

K X
(8+e) 7T (8+y.) + (-1)" J (8+e-d)D

k
i=l

1
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where

D, = c (6+y
2

)

(9+Vl»
"k-1

-(6+y
k )

The determinant D, can be computed recursively as

D
k

(6+V D
k-i

+
"i-1=1

and these equations can be solved. We find

D
k

= n (Q+M
±

) - n y i
i=l i=l

/e (A.l)

Substitution of (A.l) into I M — 01
1

gives

= (8+e) II (6+y.) + c(G+e-d)
i=l

1

k k >

n (e+y.) - n y. /e.
i=l

X
i-1 ^ (A. 2)

We wish to show that all k + 1 roots of (2) have strictly

negative real parts assuming e, e-d, y, , . . . , y, are all

strictly positive.

The k + 1 degree polynomial on the right side of equation

(A. 2) has strictly positive coefficients, thus by Descartes rule

only strictly negative real roots are possible. It remains to

consider the case of complex roots and we assume 9 - a + b.. Since

complex roots of (A. 2) appear in conjugate pairs we assume b >

without loss in generality.
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Assuming 9 is complex allows us to rewrite (A. 2) as

6 (8+e) = c(6+e-d)
k Mj

^1=1 1 }

(A. 3)

case

We consider the case a ^ or < arg 6 £ y. In this

k u

i=l K
i

< 1, and it follows that

Re
k y. k u,

.* (eryH- 1 <0 or i <arg
L

n ferpH- 1 <f .

1=1 1 J ^1=1 K
l ;

Furthermore, < arg(6+e-d) < arg(6+e) < arg (6) £ y, and

it follows that

< arg (6 (9+e) ) < arg c(9+e-d)
k i=l *i

< 2lT.

Consequently, 6 cannot be a root of (A. 3) and consequently, (A. 2)

if a ^ 0. We have just proved that any complex root must have

strictly negative real part, thus all k+1 eigenvalues of M

have strictly negative real parts.
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